The Planetary Science of Exoplanets

Mark Marley (NASA Ames)

Collaborators: Jonathan Fortney, Didier Saumon, Katharina Lodders, Richard Freedman

Age of Exoplanet Characterization

- 270 exoplanets
- About two dozen transiting planets
- Spitzer, HST, MOST,
 COROT, Kepler, JWST...

Solar System Heritage

- Decades of in situ planetary exploration
- Appreciation for key processes
 - Stratospheres
 - Clouds
 - Atmospheric dynamics
 - •Interior structures....
- Many opportunities for leveraging investment

Today

- Why characterize extrasolar giant planets?
- Stratospheres
 - two classes of hot Jupiters
 - heritage: photochemistry
- Clouds
 - clouds in exoplanets
 - heritage: solar system & brown dwarfs

- Mass and Radius
- Composition
- Atmospheric structure
- Atmospheric dynamics

- Mass and Radius
- Composition
- Atmospheric structure
- Atmospheric dynamics

- Mass and Radius
- Composition
- Atmospheric structure
- Atmospheric dynamics

- Mass and Radius
- Composition
- Atmospheric structure
- Atmospheric dynamics

- Mass and Radius
- Composition
- Atmospheric structure
- Atmospheric dynamics

 While radial velocity & SIM will determine masses and orbits, planets are more than masses on springs and well characterized planets are fiducials for more distant objects

- While radial velocity & SIM will determine masses and orbits, planets are more than masses on springs and well characterized planets are fiducials for more distant objects
- Giants provide a record of stellar system formation & perhaps volatile transport

- While radial velocity & SIM will determine masses and orbits, planets are more than masses on springs and well characterized planets are fiducials for more distant objects
- Giants provide a record of stellar system formation & perhaps volatile transport
- Giant planet science provides end to end experience of planet characterization, heritage for bigger efforts

- While radial velocity & SIM will determine masses and orbits, planets are more than masses on springs and well characterized planets are fiducials for more distant objects
- Giants provide a record of stellar system formation & perhaps volatile transport
- Giant planet science provides end to end experience of planet characterization, heritage for bigger efforts
- Extend understanding of key solar system processes under extreme new domains

Need Models!

Chemistry

Opacities

Condensates

+ Dynamics

Composition Metallicity, C/O, ...

Chemistry

Opacities

Condensates

+ Dynamics

Metallicity, C/O, ...

Chemistry

Sedimentation

Opacities

Condensates

+ Dynamics

Metallicity, C/O, ...

Chemistry

Sedimentation

Opacities

High T CH₄

Condensates

+ Dynamics

Metallicity, C/O, ...

Chemistry

Sedimentation

Opacities

High T CH₄

Condensates

Cloud Physics

+ Dynamics

Metallicity, C/O, ...

Chemistry

Sedimentation

Opacities

High T CH₄

Condensates

Cloud Physics

+ Dynamics

Circulation, f

Solar System Heritage

RSS × IRIS **人PPS** UVS ▲ SO .0001 .001 P (bars) .01 80 100 140 60 120 160 T(K)

McKay, Pollack & Courtin (1989)

Marley & McKay (1999)

Radiative timescales are shorter than dynamical timescales!

0.001 $M = 1.3 M_{tt}$ [M925104] 0.01 0.1 P (bar) 1.0 10 HD 2094 86 100 Gliese 436b 189733b 1000 500 2500 1000 1500 2000 0 (K)

Gliese 436b

Gliese 436b

 T_{brt} (8µm) = 712 ± 36 K Deming et al. (2007)

Gliese 436b

 T_{brt} (8µm) = 712 ± 36 K Deming et al. (2007)

 $T_{eq} \approx 640 \text{ K}$

Gliese 436b

 T_{brt} (8µm) = 712 ± 36 K Deming et al. (2007)

 $T_{eq} \approx 640 \text{ K}$

But...

 $T_{brt} \neq T_{eff} \neq T_{eq}$

Stratospheres

Warm Stratospheres

Photochemistry is important in every case.

Diversity of Planets

Harrington et al. (2006)

Knutson et al. (2008)

Harrington et al. (2007)

Harrington et al. (2007), for HD 149026b

Fortney et al. (2008)

pM class

- TiO/VO stratospheres
- short T_{rad}
- hot/cold hemispheres

pL class

- cool upper atmospheres
- long Trad
- more homogeneous hemispheres

0.015 AU OGLE-TR-56 from Sun Class OGLE-TR-132 0.02 AU WASP-1 0.025 AU HD149026 0.03 AU ups And b OGLE-TR-10 HD179949 (erg JrES-2 10⁹ HD209458 HD147506 0.04 AU Flux \bigcirc GLE-TR-113 51 Peg X0-2 HAT-P-1 WA ₩ASP-2 0.05 AU Incident XO-**♦ H**D18973 SS HAT-P-3 JrES-1 - 0.06 AU 0.07 AU **⊘**GLE-TR-111 UA 80.0 0.09 AU HD17156 0.10 AU 108 0.1 1.0 10.0 Planet Mass (M_J)

Tests

- pM class
 - large T_{brt}
 - emission features
 - high day/night contrast
 - TiO/VO bands
- pL class
 - Iow T_{brt}
 - absorption
 - low contrast
 - Na/K lines

Fortney et al. (2007)

0.015 AU OGLE-TR-56 from Sun Class OGLE-TR-132 0.02 AU WASP-1 0.025 AU HD14902 0.03 AU ups And OGLE-TR-1 179949 (erg JrES-2 109 HD209458 HD147506 0.04 AU Flux **OGLE**-TR-113 ₩ASP-2 HAT-P 0.05 AU Incident XO-10189733 SS HAT-P-3 JrES-1 - 0.06 AU -0.07 AU **⊘**GLE-TR-111 UA 80.0 0.09 AU HD17156 0.10 AU 108 0.1 1.0 10.0 Planet Mass (M_J)

Tests

- pM class
 - large T_{brt}
 - emission features
 - high day/night contrast
 - TiO/VO bands
- pL class
 - Iow T_{brt}
 - absorption
 - low contrast
 - Na/K lines

Fortney et al. (2007)

Tests

- pM class
 - large T_{brt}
 - emission features
 - high day/night contrast
 - TiO/VO bands
- pL class
 - low T_{brt}
 - absorption
 - low contrast
 - Na/K lines

HD 189733b (pL)

HD 209458b (pM)

Need a GCM

Photochemistry

Jupiter at I AU

- 25x higher UV flux
- H, C, O, N, S, P chemistry
- Many pathways to hazes
- But...Liang et al. (2004) find no hazes in hot Jupiters

Haze Production

Haze Production

New Paradigm?

Old School

Substantially alter spectra and colors of canonical haze-free models

Alternative heating mechanism?

Clouds

Characterization

- Mass spectra
- Radius spectra
- Albedo
- Effective temperature spectra
 - Equilibrium temperature
 - Internal luminosity
- Atmospheric composition spectra

Characterization Requires Spectra

- band depths yield composition
- but likely contrast is too poor
- clouds control continuum
- but need a model for the clouds to extract interesting information

Lodders (2005)

Marley et al. (1999)

Clouds are Challenging

Clouds, aerosols, and photochemistry in the Jovian atmosphere

Robert A. WestDarrell F. StrobelMartin G. Tomasko

Top 10 most cited "Jupiter" paper

A Cautionary Tale Brown Dwarfs

Burrows et al. 1997

DwarfArchives.org

Archives of photometry, spectroscopy, and parallaxes for all known L and T dwarfs.

```
Archive <u>search engine</u>
```

Full list of 608 L and T dwarfs (html, text)
L dwarf-only list (html, text)
T dwarf-only list (html, text) - 122

Spectra

Measured parallaxes (html, text) - 77

Planet & BD Discoveries

- Teff of known BDs span much of the EGP discovery space
- g influence on emergent spectra tends to be small (note large g error bars)
- Planet/BD distinction is already blurry

Colors

- L's become progressively redder, with some scatter
- Rapid transition in J-K color to T dwarfs
- Early T's are brighter than late L's at J band

Colors

- L's become progressively redder, with some scatter
- Rapid transition in J-K color to T dwarfs
- Early T's are brighter than late L's at J band

Transition is Rapid

Liu et al. (2007)

Transition is Rapid

Liu et al. (2007)

Transition is Rapid

J brightening is real

Liu et al. (2007)

Transition is at ~constant Teff

 $\mathsf{T}_{\mathsf{eff}}$ and (infrared) spectral type adjusted for recently confirmed binaries and newer objects Error bars reflect unknown ages. The coldest object in the plot is the T8 2MASS J0415-09.

data from Golimowski et al. (2004) & Luhman et al. (2007)

Transition is at ~constant Teff

 $\mathsf{T}_{\mathsf{eff}}$ and (infrared) spectral type adjusted for recently confirmed binaries and newer objects Error bars reflect unknown ages. The coldest object in the plot is the T8 2MASS J0415-09.

data from Golimowski et al. (2004) & Luhman et al. (2007)

Key Questions

- What causes apparently rapid removal of clouds along with color change and brightening?
- How to constrain T_{eff} and g from spectra of L and T dwarfs as complicated by clouds?
- What other dynamical processes are important?
- Bridging the gap to the planets

Need for Cloud Model

- No precipitation yields colors that are too red
- Perfect precipitation yields colors too blue

Cloud Modeling Schools

Top - Down

Helling et al.

Fixed

Tsuji, Arizona

Bottom - Up

Ackerman & Marley

Chemical Equilibrium

PHOENIX - DUSTY

Cloud Modeling Schools

Top - Down

Bottom - Up

Helling et al.

Ackerman & Marley

Fixed

Tsuji, Arizona

Chemical Equilibrium

PHOENIX - DUSTY

With the Rain...

- Early L's cloud is optically thin
- Late L's cloud is optically thick, strongly affecting Z and J bands
- T dwarfs cloud is below photosphere
- In cool overlying air
 CO → CH₄, hastening
 turn to blue in J-K

Ackerman & Marley (2001)

...Comes the Blues

Results for self-consistent coupling of cloud & r/t model with $f_{\text{sed}} = 3$:

- fits L dwarfs better than well-mixed cloud
- J-K \leq 2 for L dwarfs
- turns to blue as cloud sinks out of sight

Burgasser et al. (2002)

Sinking Cloud Fades too Slowly

Burgasser et al. 2003

Hot Spot Hypothesis

- cloud holes appear
 at T_{eff} ~ I350 K
- explains brightening& sudden bluewardshift
- small T_{eff} range in early T's
- but why?

Burgasser et al. (2002)

Alternatively...

- Change in atmospheric dynamics leads to rapid, global increase in sedimentation efficiency, not patchiness (Hilo rain)
- Cloud collapses
- Consistent with mid-T spectral fits
- But...
 - FeH
 - variability

Spectral Fitting Alone is not Adequate

- Too many free parameters (cloud, metallicity, T_{eff}, g, K_{zz})
- Models have missing or incomplete opacity sources (FeH, CH₄, H₂-H₂)
- Need....

Fiducial Objects

```
Need Model
Independent
T<sub>eff</sub>
Mass
```

Fiducial Objects

Need Model Independent T_{eff} Mass

Liu et al. (2007)

Fiducial Objects

Need Model Independent T_{eff} Mass

Liu et al. (2007)

Lesson for Exoplanets

- Clouds are exceptionally important
- Clouds are challenging
- Fundamental interpretation hinges on unproven cloud models

Lesson for Exoplanets

- Clouds are exceptionally important
- Clouds are challenging
- Fundamental interpretation hinges on unproven cloud models

Summary

- Exoplanets
 - Evidence for hot stratospheres
 - Interplay of radiative cooling and dynamics is important
 - Two classes of planets
- Brown Dwarfs
 - L to T transition hinges on clouds, which are challenging to model
 - Need to find fiducial objects to validate models
- Solar system expertise helps!

Help Wanted

Wildy successful startup field has immediate and ongoing opportunities for planetary scientists with expertise in

Help Wanted

Wildy successful startup field has immediate and ongoing opportunities for planetary scientists with expertise in

- atmospheric dynamics
- chemistry
- seasonal change
- radiative transfer
- cloud physics
- photochemistry

- spectroscopy
- photometry
- origins
- atmospheric modeling
- interior structure
- ...